

Time-Accurate Simulations of Incompressible Flows with Moving Boundaries

Cetin Kiris
Dochan Kwak
Stuart E. Rogers
NASA Ames Research Center

Workshop on Numerical Simulations of Incompressible Flows June 19-21, 2001 Half Moon Bay, CA

Á

Outline

NASA

- INTRODUCTION
 - Status
 - Major Drivers of the Current Work
- OBJECTIVE
- SOLUTION METHODS
 - Formulation / Approach
 - Summary of Solver Development
 - Current Challenges
- HEC APPLICATIONS
- Parallel Implementation
- Application to SSME Turbopump
- DISCUSSION

Status from Applications Point of View

Ames Research Code

- Applications to Real-World Problems
 - N-S solution of full configuration was a big goal in the 80s
 - Numerical procedures and computing hardware have been advanced enabling simulation of complex configurations
- Some Examples of Successful Applications
 - Components of liquid rocket engine
 - Hydrodynamics (Submarines, propellers, ...)
 - Ground vehicles (automobile aerodynamics, internal flows...)
 - Biofluid problems (artificial heart, lung, ...)
 - Some Earth Science problems
- Current Challenges
 - For integrated systems analysis, computing requirement is very large
 ⇒ Analysis part is still limited to low fidelity approach
 - For high-fidelity analysis, especially involving unsteady flow, long turn-around time is often a bottle neck ⇒ Acceleration of solution time is required

3

-

Major Drivers of Current Work

 To provide computational tools as an economical option for developing future space transportation systems (i.e. RLV subsystems development)

Impact on component design

⇒ Rapid turn-around of high-fidelity analysis

Increase durability/safety \Rightarrow Accurate quantification of flow

(i.e. prediction of low-induced vibration)

Impact on system performance \Rightarrow More complete systems analysis using high-fidelity tools

Target

Turbo-pump component analysis \Rightarrow Entire sub-systems simulation

Computing requirement is large:

⇒ The goal is to achieve 1000 times speed up over what was possible in 1992

• To enhance incompressible flow simulation capability for developing aerospace vehicle components, especially, unsteady flow phenomena associated with high speed turbo pump.

INS3D - Incompressible N-S Solver

NASA

Ames Research Center

- ** Parallel version : Based on INS3D-UP
- •MPI and MLP parallel versions
- Structured, overset grid orientation
- Moving grid capability
- · Based on method of artificial compressibility
- Both steady-state and time-accurate formulations
- 3rd and 5th-order flux difference splitting for convective terms
- Central differencing for viscous terms
- One- and two-equations turbulence models
- Several linear solvers : GMRES, line-relaxation, LU-SGS, point relaxation, ILU(0)....
- •HISTORY
 - ** 1982-1987 Original version of INS3D Kwak, Chang
 - ** 1988-1999 Three different versions were devoped:

INS3D-UP / Rogers, Kiris, Kwak

INS3D-LU / Yoon, Kwak

INS3D-F5 / Rosenfeld, Kiris, Kwak

Time Accurate Formulation

Ames Received Code

• Time-integration scheme

Artificial Compressibility Formulation

- · Introduce a pseudo-time level and artificial compressibility
- · Iterate the equations in pseudo-time for each time step until incompressibility condition is satisfied.

Pressure Projection Method

· Solve auxiliary velocity field first, then enforce incompressibility condition by solving a Poisson equation for pressure.

7

Artificial Compressibility Method

Ames Research Conte

Time-Accurate Formulation

 Discretize the time term in momentum equations using second-order three-point backward-difference formula

$$\left[\frac{\partial U}{\partial \xi} + \frac{\partial V}{\partial \eta} + \frac{\partial W}{\partial \zeta}\right]^{n+1} = 0 \qquad \frac{3q^{n+1} - 4q^n + q^{n-1}}{2\Delta t} = -r^{n+1}$$

- · Introduce a pseudo-time level and artificial compressibility,
- Iterate the equations in pseudo-time for each time step until incompressibility condition is satisfied.

$$\frac{1}{\Delta \tau} (p^{n+1,m+1} - p^{n+1,m}) = -\beta \nabla q^{n+1,m+1}$$

$$\frac{1.5}{\Delta t} (q^{n+1,m+1} - q^{n+1,m}) = -r^{n+1,m+1} - \frac{3q^{n+1,m} - 4q^{n} + q^{n-1}}{2\Delta t}$$

Current Challenges

NASA

- Challenges where improvements are needed
 - Time-integration scheme, convergence
 - Moving grid system, zonal connectivity
 - Parallel coding and scalability
- As the computing resources changed to parallel and distributed platforms, computer science aspects become important such as
 - Scalability (algorithmic & implementation)
 - Portability, transparent coding etc.
- Computing resources
 - "Grid" computing will provide new computing resources for problem solving environment
 - High-fidelity flow analysis is likely to be performed using "super node" which is largely based on parallel architecture

- ●Unsteady SSME-rig1 start-up procedure from the pump at rest has been initiated by using 34.3 Million grid points.
- Computational model for the SSME-rig1 is completed. Moving boundary capability is obtained by using DCF module in OVERFLOW-D.
- MPI /Open MP hybrid parallel code has been benchmarked.
- MLP shared memory parallelism has been implemented in INS3D, and benchmarked
- MLP/OpenMP version requires 19-25% less computer time than MPI/OpenMP version, Pin-to-node for MLP version is implemented. 40% less computer time is required in the new version.
- Time-accurate features of methods designed for 3-D applications are evaluated. An efficient solution procedure is obtained.
- Work currently underway
 - •Unsteady SSME-rig1 simulations by using 34.3 Million grid points.
 - Experimental measurements at NASA-MSFC.